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Thus, on the basis of the three-dimensional magnetoelasticity equations, a correct
two-dimensional theory of shells and plates of finite conductivity has been constructed,
This theory allows us to solve magnetoelasticity problems for shells and plates having
finite dimensions,

The authors are grateful to A, L, Gol'denveizer for discussing the research and for
valuable comments,
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Values of the upper critical buckling loads of nonsymmetric strictly convex elas-
tic shallow shells are determined when the relative wall thickness parameter is
sufficiently small, Simple relationships are derived from which the mentioned
values can be found if the character of the loading, the shell geomeury, and the
method of fixing the edge are known, In passing, asymptotic expansions of the
solutions permitting a computation of the stress-strain state of shell in the precri-
tical stage are constructed for the appropriate boundary value problems, As an
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illustration, asymptotic values of the upper critical pressures are found for eilips-
oidal shells subjected to uniform external pressure and for different fundamental
methods of fixing the edge, A number of problems on the buckling of strictly
convex thin shells has been examined in [1],

1, Pormulation of the problem, A nonlinear modification of the theory
of "mean” bending of an elastic shallow shell subjected to a twransverse load is considered

23
]ezAzw —w—1z2 F] —q=0, AW 4+ Yo lw, w]l — [z, wl =0

1 , 1 , 1 °
e F x = T_"_';'z'[vv + Iy + Tlt"vz -V <ux T Zaall + T s

2 1 S
e F oy = — AT {uy + ve + 22w + waw,) (1.1)
1

1 1 2 , 2
EQFHU = m{ux + Zalo + wa, - ViDy + ZyyW -+ Tu’ll
Aw = wyy + Wwyy, (F,wl = Frawyy + Fyywey — 2F wey,

All the quantities in (1,1) are dimensionless and connected by the dimensional relation-

ships Z=a W=aw, U=au, V=av, =z, =az, y, = ay

g2 = h(ay)?, @ = Eda®?F, p = Eyelq, 9*=12(1 —v?)

Here Z is the shell middle surface, U, ¥V, I are the displacements along the coor-
dinate axes Oz,, Oy,, Oz,,respectively, (O is the Airy stress function, p is the exter-
nal load intensity (pressure), and 4 is Young modulus, It is assumed that te shell occu~
pies a finite simply-connected convex domain D with boundary ', where the shell
edge coincides with I', i,e, 2z (s) = 0 if s & I'. The small parameter g2 charac-
terizes the relative wall thickness of the shell, £ is the thickness, v is the Poisson's
ratio, and a is the characteristic dimension of the domain . The deflection W is
measured from the surface Z in the direction of load action,

Equations (1,1) are investigated, together with each of the boundary conditions on the
contowr I

VWF=F =w=[w,+v(w, —xw,)l =0

N F=F=w=w =0 (1.2)
Nu=v=ws=|w, +v(w, — )l =0
Hu=v=w=w =0

Here X = % (s) is the curvature of the contour I', where x ~> 0; s is the arclength
parametet, and 0 is the interior normal to I'. The boundary conditions (1.2) correspond
to: (1) a moving hinged edge support, (2) sliding clamping of the edge, (3) a fixed
hinged support, (4) absolutely rigid framing of the edge, Moreover, the surface z (z, V)
is assumed strictly convex, and the functions ¢ (z, y), 2 (z, y) and F, (z, y) from
(1.4) (see below) are sufficiently smooth,

Asymptotic values of the upper critical loads of arbitrary strictly convex shallow
shells for the mentioned methods of edge fixing, when &° tends to zero, are determined
herein, In passing, asymptotic expansions of the solutions of the problems (1,1),(1.2)
are constructed as &€ — 0 , To do this, we use methods of asymptotic integration of
the shell theory equations developed in [4 — 8].

let ¢ == (. We then have from (1.1)
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Y, {wy, we]l — [z, wel = 0, [wg — 2, Fol = ¢=0 (1.3)

The former is the .Monge-Ampére equation, and has two solutions under the boundary
conditions w, (s) = O such that

Dwe=0, Iz5,Fl=0q 2)w=2 I[F]=—¢ (1.4)

The first of these solutions corresponds, for small values of the parameter € to the fun-
damenta] elastic equilibrium mode close to the initial surface z, since (1,1) are satis-
fied to the accuracy of quantities on the order of &2, but the boundary conditions (1.2)
are hence not satisfied, It is shown below that as ¢ — O the problems (1.1),(1.2) have
solutions which behave similarly to (1) in (1, 4) everywhere within the domain D and
undergo swong changes near the boundary I' such that the boundary conditions (1.2)
are satisfied, These changes are described by the edge effect equations whose solution
for arbitrarily assigned z and g reduces to integrating the edge effect equations for a
spherical shell under uniform extemal pressure, These latter are solved numerically on
an electronic digital computer in [8],

The Pogorelov [1] hypothesis that the swrain of a sufficiently thin shell in the precri-
tical stage is mainly an isometric wansformation identical with the initial surface and
the shell experiences substantial strain only in the nelghborhood of the boundary of the
buckling domain is confirmed here,

2, Strictly convex shells with free fixing of the edge, The asym-
ptotic expansions of the solutions of probiems (1.1), (1) and (2) in (1,2) are constructed
as ¢ — 0 in the neighborhood of the first soiution in (1, 4) as

F(z,y,€)~ ) € [Fi(z,y) + th; (z,y,©)] AN

i=0

w(z, y,8)~2 e [wi (2, y) + £8: (2, ¥, 2)]
im=0
The functions F;, w; are obtained by using the first iteration process [9]. Namely,
lerting V = (F, w) denote the solution, and P (V) the left side of the system from
the first two equations in (1,1), let us require that

n

P(V)=0 (), V.= (2 eF, Z ) (2.2)
i==0
Collecting coefficients of €°, ', ... €" and equating the expressions obtained to zero,
we have for the determination of Fy, u
w0=0, [Z,Fo]=q, FO‘P:’AO(S)EO (23)

and a system of linear, second-order, partial differential equations of elliptic type for
the determination of £;, w; 1 .
[wiv Z] = = 2 lw..‘v wJ] + A'Fi-z

Kemjo=i

[F‘iv Z} 2 [Z”h'? FJ] - Azwi‘2 (k’ h 7“-‘ 0) (2'4)

Fill"=A>i(s), wilp=Bi(s) (i=12,...n Fau=uw,=0)
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The right sides of (2, 4) are known if Fo, Wy, ..., Fy_). w;_; have already been found,
The functions A; (s), B; (s) in the boundary condmom will be determined somewhat
later in (2,11).

The vector YV, does not satisfy the boundary conditions (1) or (2) in (1.2) and the
residuals originating are cancelled by functions of boundary layer type h;, g; which
are determined by using the second iteration process [9]. To do this the difference
Y — V,, is sought in the form (2.1), After substituting (2, 1) into (1,1), we take account
of (2. 2) and go over to local coordinates (p, ¢) of the boundary I' in the relationships
obtained by means of the formulas

Y = Pop, -+ YoPus "py = lpppy + ¢=(Py

We hence have

Ze“sA*hi—‘r—;— 2 ehii2 g, g1 + Z ef+iel [w,, 8] —Z eirllg;, z]= 0 (x"*)
{120 k, im0 k, i==0 i=0
S eaatg — 3 g b + 2 et [hy, 2] —
=3 k, is=0
S, e (Fy gl — 3 ekt g,y = 0" (2.5)
k, im0 K, i==0
Here

lu, ¥l = UraPyy + UyyWVxx = LUxyPry
‘p:y = ‘pﬁﬂ.oxpy "' ‘ppv (Px‘iPy ":" pyfpx) ‘:" 'le:(PxCPy '+' \pﬂ'pxy + ‘pw(ny

4
At =2 D Ak —wr—

la=l m—n==l a a¢
Then we expand Fy. uwy, a,,’.h, Pxs Pxs Pxx: Pxys ++- in a Taylor series in the neigh-
borhood of p = 0, set p = et, collect coefficients of identical powers of ¢, and
derive equations to determine A;, £ by equating the expressions obtained for £~*
el ..., e"™1 1o zero,

Let us note some valid relationships on the contour I'. Sufficient smoothness of

P (2, ¥), ¢ (2, y), as well as for the arbitrary function ¥ (z, y) relative to its argu-
ments is hence assumed

p~’2 + pU2 = 17 Ox = — Y;,(S'l, oy = X671
Gz = X072, Gy = Y,07%, =Xt Yt

O Oxy — puz»"yu - 20\.011. xy = 0, pxzpyy - pysz:: - ZPx.Oupxu =% ((P)v
PouPy® + Pyyps? — 2‘4/.\-upxpy = Ppp0 — 674 (XoX oo + Y oY) — % (P) Yo =
Y5 — % (5) P, Jfﬁ: =1, :'.f,}) =0, at;(,:‘,) = — 2% (2.6)

Here % = % (g) is the curvature of the contowr I' at a point corresponding to the
value of the parameter ¢ (or the arclength parameter 5s); X = X (¢), Y =Y (¢)
are parametric equations of the curve I' in the positive direction, Now, by using (2.6),
we obtain that the €72 coefficient is identically zero, The ¢~! coefficient results in
a system of nonlinear ordinary differential equations for the determination of £, £.
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O3hg 1 a ago \2 Agn Mgn n
s T Tt e \Tor) T or T o
a3 /(}00 ahn N 32,’!0 N
LfLn R et e —— =0 2.7
X\ ot ot ) fr < — % 5 (2.7
f= Felr, C'—‘-‘-Zpl[‘>0

In deriving the values for / and c it is taken into account that F, (s) = z (s) = 0,
if s = T. We obtain a system of linear differential equations with variable coeffici-
ents of the form

B, 8 [ dgy 08;° g,
L g (22 L) e — = R, N
ati Xor\ ot Tt ) xC = = R (2.8)
-——d‘gi — % _5_ Bho 9%i ) % 0 ( gga O L ¢ 9g, % R
g g\ ) TS ) T e — % = Ra

to determine h;, g; (i > 1) . Here R;,, R;, are known functions if F,, ws. ...
Fieyy Wieys hoy 8o --- Micyy §i-y have already been found, '

Let us find the boundary conditions for %;, g; (i >> 0). To do this, let us substitute
(2.1) into those boundary conditions (1.2) which contain the derivatives, Assuming
0 = et ,and equating coefficients of identical powers of € to zero, we obtain -

1) %hti r=p =,_FW'P’ 9:::’70 -0 0, —adht—1 =y Fie 'I"
adlii- — =V di(;;-l- r— V8ig, ss 1m0 = [Wit, po -+ VWisy, 3s — VWi, 5lr  (2.9)
2) -?IT“’ 1mp = — Foelr, _a% = %— e =~ Flelr
_a(%i.”‘o=—wi,|p (i=1,2,...m8..=0)

Moreover, four more conditions result from the requirement that the functions 4;, g;
vanish at infinity dh, oz,
{ ST

i,gi,—a%,'g- (i=01,...n) (2 10)
Now, let us determine the boundary conditions for F;, w;. Satisfying (1,2) by using

(2.1), we have

[Fo -+ }nj et (F; + hi—l)] = 0 (e"*), [wo + é e (w; + gi—l)]r = 0 (e"*)

imm] r i=1
It hence follows that
FO]T = Welr = 0, A4;(8) =—hi, 0), B;(s) = —gi-y (0) (2.11)

The first relationship imdicates the correctness of the selection of the boundary condition
in (2, 3), and the second permits predetermination of the problem (2.4).

Thus, the construction of asymptotics of the solutions of (1,1) under the boundary
conditions (1), (2) in (1.2) reduces to the following. First F,, w, are determined
from (2. 3),(2.11), and then hq, go from (2.7),(2.10), Furthermore, F,, w, are
determined from (2. 4),(2.11), and then k,, g, from (2. 8) - (2.10), etc, Making the
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substitution
8ho _ agn _ - 1 — fa=l
Sr=—x, —r= Be, T=V xet, - Q=fc

we obtain from (2, 7), (2. 9),(2.10)

e lpaa=0, Zhomp—at 1 08=0, {%B.—0(212

with the corresponding boundary conditions

a3 1 =

1) a(0)=—;-0, =|_=0 220)=%0 B8O0=0 (213
Therefore, for arbitrarily given z and g the solution of the equations for the main term
in the edge effect zone reduces to the very same system (2,12). The problems (2,12),
(2.13) have been solved numerically in {8]. The least branchpoints Q* for these prob-
lems have also been found there, Then, let us introduce the quantity

5 = max, Q = max, [2fc™'] = max, [—zpi(s)-§ Go(z,y:8,m) ¢ (G, M) dE dn]

T==0

f=Fp(s), c=12(), s<=T

as the load parameter [8], Here (G is the Green's function for the problem (2, 3), and
the point (z, y) = I'. Then using the result of Sect. 3 in [8), we obtzin the respective
asymptotic values of the upper critical load

1) 0y = Q* = 0.793, 2) oy = Q* = 1.766 (2.14)

for the boundary conditions (1) and (2) in (1. 2). This value can be refined if we use
series of perturbation theory

>~ Dl g* @Y ~q(@ )+ D E (2.15)
() ime]

Here the ¢; are constants determined together with o; from the condition that the linear
boundary value problems of the second iteration process are solvable for i > 1. Thus,
by passing to dimensional variables we arrive at the following result,

Let 2, ¢ and F, from (2. 3) be sufficiently smooth functions in D 4 I'. Then for
very thin shells with the edge fixing conditions (1), (2) in (1. 2), the .values of the upper
critical load P;* are determined by the formula

Eh? 2 \ . . S .
P* = e 5% = IST;&IX [.zp_(S) éGp (z,y; &, M) p;* (&, m)d§ d'ﬂ] =
:1,-E h\2 ! . _ o
—m—-—:—;—:\—a—) (1 +ay:=...], j=12 2,=03965 =088 (2.16)

Here the subscripts j = 1,2 correspond to the boundary conditions (1), (2) in (1.2), «
is the characteristic dimension of the domain D and G is the Green's function of the
problem (2. 3). (The coefficients a;; are not found herein),

3, Strictly convex shells under rigid edge fixing, The construction
of the asymptotics in this case is rather more complex than in the case of free edge fix-
ing, Indeed, even the determination of /' from (1. 4) encounters difficulties in con-
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structing the first iteration process (it is not known what boundary conditions are obtained
for F, at ¢ = (). Hence, equations connecting the function F with the variables u,
v, w are relied upon in both iteration processes,

Equating the third order mixed derivatives for the function F, we obtain from (1.1)

1 -—_V | 1 _:- v )
L1 (u‘ U) = vyy + 3 Upx T P u:\"u = fll (w) e /‘12 (w7 w)
, l—w 1—w _ .
Ly(u,v)=u. + 7 Uyy + 3 Vxy = fa1 (@) + fae (w, w)
fu) = —[(zyy + Vi) Wy — (1—wv) (CxyW)x
f21 (w) = [(:'xx ':"' szu) w]x - (1 - V) (zx.uw)u (51)
1—v .
frz (@1, Wa) = — Wiylayy — VWialnyy — —5— Wiylexx T W1ixWaxy)
{—w \
fao (W1, Wy) = — WiWarx — VW 1yWaxy — P (WryWaxy =+ WyxWaxy)

Let us note that the relations (3. 1), together with the first equation from (1.1) and the
boundary conditions (3) or (4) in (1. 2), comprise a complete system of equations for the
mean bending of shells, written in terms of displacements [2, 3],

As before, the asymptotic expansions for F and w are constructed in the form (2.1),
and for u and v in the form

n n n n
U~ D) Eluy 4 D) e, v~ D eto + D e, (3.2)
im0 == 1m0 i==0
As a result of the first iteration process, we have (1, 3) to determine F,, wy from (1.1),
apd the following system for u,, Vo :
Voy + ZyyWo + Mz Whoy + ¥ (ox + Zxztto + U wo{)_=00 53
Ugx + ZzxWo + Y2 Wox® + V (Voy + Zyy¥o + He Woy') = )
Ugy + Vox + 22, yWo + WoxlWoy = 0

We obtain (2. 4) to determine F;, w; and the following system for u;, v; (i > 1) :

4 4 ;
Fl—z. xx = 1T — [viy -+ 2 Wy -+ 3 2 (wwwmy ny anxwmx) + VUiz+ szxwi]
Kd-meni
-1 | 1
Fis.ov = 50T [uiy + Vi + 22wi + D) wxxwmu] (Fa=0) (3.4
keme—i
1 e Co Lo
Fi‘-Z.‘w = { — vt [uix + 2l 3 2 (wt;xwmx + th'ywmy) T Vliy T \zyywi]
K4+-mesi

Analogously to the derivation of (3,1) for ¢, Uo, we have from (3, 3)
L, (uq, vg) = f11 (wo) + frz (W, W), Ly (ug, vo) = fay (wo) +

a2 (wo, wo) (3.5)
and from (3. 4) the following system for u;, U; :
Ly (uiy vi) = fa (wi) + 2 hra (Wi, W) (3.6)

Kdmaai
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Ly (ui, v3) = fo (w:) + 2 oz (Wi, W)

k+mami

Requiring that the expansions (2,1) and (3, 2) be satisfied on the boundary ' by the rela-
tionships (3) or (4) in (1.2), we obtain the following boundary conditions for the systems

.4) and (3.6): , .
(2.4) and (3.6) wilp = —gialr, uilr=— Nialr, vilc=—2Gia]r 3.7

(i=0,4,2,...; ga=na1=0{1=0)

Thus, in order to determine w;, U;, V; at each stage, it is necessary to know the value
of the boundary-layer functions &i-1, Ni-1, &4y, on the boundary I', which are determ-
ined as a result of the second iteration process, Let us show that

We=Uy =V, =0, wy=u=yp=0 (3.8)

The first relationship is obtained directly from (3. 7),(1.3) and (3, 5), To prove the se~
cond relationship, let us first find the boundary condition (3, 7) for i = 1. It will be
shown below (see (3,17)) that gy = 7y = {, = 0 and therefore, w, (s) = u, (5) =
v, (8) =0 for s = T'. Then (3, 8) results from (2.4) and (3,6) for i = 1. Furthermore,
to determine u,, Uy, W, , we have two equations from (3, 6) for i = 2 and an equation
from (1. 4), which is written by using (3.4) for i = 2 as

Zax (Uax =+ ZxxWy =+ VUoy + VI ,Ww,) + 2,
(vay + 2y Ws = VlUgy + V2o W) = g (1 — v?) (3.9)

The boundary conditions are hence determined from (3,7) for i = 2. Now, if U, Un,

w, have been found, the second derivatives of the function F, are calculated by means

of (3,4) for i = 2. Let us note that u,, v,, w,, F, are found simultaneously with the
determination of the boundary layer functions 2, ;. §;, N;. The subsequent terms of
the first iteration process are constructed in an analogous manner,

Let us turn to the second iteration process, In order to simplify the calculations signi-
ficantly, let us first carry out the second iteration process for the functions h;, g; by
temporarily assuming that the functions F;, w; are known, Then, as in Sect, 2, we obtain
the system (2. 7) to determine Ay, g . The boundary conditions for the functions g, at
t = 0 are obtained exactly as in (2., 9). In order to obtain the boundary conditions for
h;, let us use the relationship for F on the contour I', which easily follows from (3)

or (4) in (1.2) (see [2]) [Feo— VF s+ xvFelr =0 (3.10)

Using (2.1) and the substitution p = €f , and equating the coefficients of identical
powers of €. we obtain from (3.10)

) 2h. oh. 0%h;_,
Pha_ =0 - l =—R(Fi4) — [”V T — ¥ ]rso (3-41)

92 lt==o ! at: li=e ot as2
R(F;) = [Fige — vF s — #vFig]r (i=41,2,...0,hy3=0
Now, it follows from (2. 7), (2. 9), (2.10) and (3.11) for any function F, that h, =

g, = 0. Then, from (2. 5) we arrive at a linear system of ordinary differential coeffi-
cients with constant coefficients for h,. £

ath, 02y
ot T % oE

_ oimy Phy a1
—09 3t3 — U ot —T'flx I -—O (3.12)
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¢ =c(8) = Zojr, fr=11(8) = [ Foxal}* + Foyys® — 2F o200y 10
with boundary conditions corresponding to (3), (4) in (1.2)

g hy _ -
3) 5t; a0 = 0’ ot l»_o =—R (FO)v {h’ls gl}co 0

/] *h
4) ‘5_8;1_ -0 ' at'zl l, -0 R(Fy), {h,8}x—0 (3.13)

The solutions of these problems are written down explicitly

3= el )orsolie Holw

' 2o B ez oy (3.14)

» ah, B ) o ____Q_ 1)
4}) —-a-—— =—b—{ OI(D Zaby(l], St =73 x!

Here
D = e=2% sinbr, YV =e-cosbr, T = (x0)'1t

a=(LF2Y", b=(SF2)T =zl Q=2he

8
fl = [Fl)ss - "FOG]I‘, €y = [Zss - szlr

B = — (#c%)"2 [Fopg = VF o5 + #vFgp]p = — (%c%)t R (F,)

The functions h;, g; (i >> 1) are determined from equations of the form (3.12), but
inhomogenous, Formulas (3,14) are valid only for Q << 4.

Furthermore, let us turn to the construction of the boundary layer functions &y, 1
(i =0.,1,2,...). Todo this, let us substitute (2.1), (3. 2) into (1.1), let us take account
of (3. 3),(3.4), and let ys turn to the local (p, @) coordinates in the expressions obtained,
Together with (2.4) we obtain

Z eH3hy L= — .é._(-é-r_—w {Z e (N1e0y + NioPy + iy + LioPy + 22y&1) +
j=0 im0
Z M+l [y, 2 (BmeOy T EmePy) + Wi, y (Bmedz + BmePx) +
k4-mamg
& (EkeDx + BkoPx) (gn{opx -+ gqu:’x)]} + 0 (™)

1=0

2 e 8hi, yy = T_il_{;f [es + vei] + O (e™*) (3.15)

i=0

Here

n

e = Z gi+t (Ciepy + Cio®y + Z,y8i) + 2 ghem+ (wk, v+ ‘;‘gkppv -+

i=0 K4-mu=g

-E' gkcfpy\) (8mePy T+ EmoPy)
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It

. e
o = 3 €1 (Migfy + MioPs + ) + &5 (0, + - Guols +

1==0 k--meeQ
3 81o®x) (Emeb + Emes)
hey = hoedsPy + Boo (P2Py + PyPx) + RooP2Py + hedzy + hoPay

Now, let us expand the known functions and their dertivatives in (3.15) in Taylor series
in the neighborhood of p == 0, let us set p = gt, let us collect coefficients of identi-
cal powers of € and let us equate the expressions obtained for g°, e!, ..., e® to zero,
We obtain the system
LotPx -+ MotPy + Bot (WoxPy + WouPx) + LotPx0y = 0
CotPy + YNotPx + 8ot (Woyby + VWeaxpPx) + Ys 8ot® (p4* + vp:*) =(:(3) 16)

Vgoth + NotPx + Eot (wo:xpx + Vwo_upy) + 1/2 30t2 (9:::2 + pre) =0

for the coefficient ° to determine 1y, {;. We will show that
Zo=m=5L=0 nm=§=0 (3.17)

The first relationship follows from the fact, already proved, that gy = U, from (3, 16)
and the conditions {{,, o} — 0. Then, equating the coefficient of £! in (3,15) to
zero, we have

1

T—w

i . .
Pxhoy = T—w (CatPy + YM104), P hoy = (NP + VE1ePy),

1 :
— PxPyhore = g CuPx =+ Mudy)

to prove the second relationship, Hence,(3.17) follows because %, = ( and {{,,

1, Jeo = 0. By wsing (8. 7), we determine the boundary conditions for the system (3, 6)
from the second relationship in (3.17) for i = 2;they are u, (s) = v, (s) = 0 for
s = I'. Then u,, Uy, w,, are found from (3.6) for { = 2 and (3. 9), and the second
derivatives of the function F, from (3.4) for { = 2. Furthermore, equating the coef-
ficient for ¢2 in (3.15) to zero and taking account of (3.17), we obtain the following
systemn of linear equations to determine 7. {,:

1 : Loy .1 2(p 2 _ 2]
Px2hyy = T—w [’:-u.oy <+ 2,81 + VMatlx +— VEi1Zxx T <5 &ut (0, — V< )_]

% § 1 1 \ N 2
["htpx + Zey + VEaPy + VB + 5 B0 (021 + "Pv')-}

pyihy = i

{2

1 “ \ . ; 2
— Pxpyhst = Th—=~ (BatPx + Mty + 22481 — £16°0x0y]

with the boundary conditions {{,, 1.} — 0. Here %, and g, are already known from
(3.14). The boundary layer functions {;, m; (i => £) are determined analogously.
Let us note that the formulas of the Pogorelov geometric method for strictly convex
shells (see [1], ch, V) can be derived from (3,12) and (3.186).

Let us introduce the load parameter {8] defined by the formula

s = max Q = max [2f,¢,”!] = max [2¢,7'Lg] (3.18)
sl sl =iy :
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h= [FoxxPy® + Foyps? — 2F0xyp.\'py]rv c; = — %(5) 20 ($)
Here L is a linear operator defined by the relationship f, = Lg. Furthermore, let us
note that (3,14) are valid only for Q << 4. For Q = 4 the problems (3,12),(3,13)
have no solutions which decrease at infinity, Repeating the same reasoning as in Sect, 4
of {8], we obtain the asymptotic value of the upper critical load in the case of the bound«
ary conditions (3) and (4) in (1.2) 6y = O* = 4 (3.19)

Successive terms of the expansion in powers of € for values of the upper critical load
can be constructed by using the relationships (2.15), Thus, by returning to dimensional
variables we arrive at the following result,

Let z, ¢ and F, be sufficiently smooth functions in D 4 I'. Then values of the
upper critical load are determined for very thin shells with the edge fixing conditions
(3), (4) in (1.2) by the formula

P* = f:: oi* = max [2¢,"'Lp*] =
et L O

Here the subscripts 3, 4 correspond to the boundary conditions (3), (4) in (1.2), a is the
characteristic dimension of the domain. D, and L is the linear operator defined by
fi = Lqg (the coefficients a;; are not found herein),

4, Ellipeoidal shell under uaiform external pressure, Let the ini-
tial shell middle surface and the paramewic equations of the contour I' be given as

7=1 — —i—-(k,a:2 + kay?), X = ]/—%-cos i) (4.1)
a
Y = }“sm(p, k1=-—}{—1->0, k.z_ Z|p=0

In the case of the boundary conditions (1),(2) in (1. 2), we find
kiFOxx+k1F0§lg/+q=0’ Folr=0

from (2. 3) for the determination of F, " It is easy to guess the solution of this problem,
We hence have

FO = T——(9 -_— I\,I.T- - vuyz)
Using (2, 6), we deduce
f=Folr =19 (whykey) ™t [hipy® + ky0.2]r, c==zr=
%71 [klpuz - kﬁpxelrv $= q/k1k2
Then by using (2,14), we have for the cases (1),(2) in (1.2)
1) oy = qo/k ke, = 0.793, 2) o, = qo/kk, = 1.766
Hence, returning to dimensional variables for the asymptotic value of the upper critical
pressure, we correspondingly obtain

0.3965 h? 0 883 h? 4.2
1) Po=-173——(—1———_—_-—;2—)'m, 2) po= V3(1 ) iR, (4.2)
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In the case of boundary conditions (3), (4) in (1. 2), we use the formulas of Sect, 3 to
determine F,. Applying (4.1), we obtain from (3, 9)

=g (1 = v%) + (ks + vky) vy + (kg + Vo) Upal (B)® + kg* + 2vkik))™

Substituting w, in (8.6) for { = 2 and taking account of the boundary conditions
Yy (5) = uy (s) = 0 (s = T), we deduce v, (z, y) = u, (z, y) = 0. Then fori =
2 it follows from (3, 4):

=9(1‘V2)K1 Foxxz-Q(k2+Vk1)K
Foyy = —~q(k + vk) K, Fopy =0, K = (k?+ k?+ 2vk,ky)™

Using (4, 3) and also the relationship (4.3)

[upp'— \u‘ss'f' W\“Pp]r = [(wx:x'—' \\py‘u) px - ’puy - V"Pxx) Pu "" 2 1+\’) \vapxpyll‘

we obtain

R (Fy) = —g (1 — %) K [kyp,® + ki ltle, o= —lkp® + ksz21(1‘4 5

fi= —gK [Py2 (ky + vk + ps* (ky + Vk‘:)]f'
Now h,, g, are determined completely by (3,14), In particular, we have in both cases
(3) and (4) g0 = —q(1 —¥) K =w,(s) sl

i, e, the first condition in (3, 7) is sarisfied for { = 2, Furthermore, taking account of
(2. 6) and (4, 4), in conformity with (3, 18), we determine the load parameter

2 R 2q (1 <+ vx)
°=°§é§“[hk (k" sin® @ -+ k,* cos® ¢ 4 v 1’”‘-’)] Tukz (1 — 2va + a9)

a=k/k,, if kg™>k, and a = k,/ k,, if k1>k=

Then by using (3,19) we have

_ 290 (1 4= va) _ __min (&, Ry ,
% = Th (14 2va +as) 4 T max (A1, Rs) <!

Hence, by passing to dimensionless variables, we obtain for the asymptotic value of
the upper critical pressure in the case of boundary conditions (3) and (4) in (1,2)

_ AE h? 1L 2va L 2
== Bl AT TTe (4.5)

Thus, for sufficiently thin elastic ellipsoidal shells under uniform external pressure and
the boundary conditions (1, 2;, the values of the upper critical pressure are determined
by the formula . a,E

P == R

J=1,2,34  a,=0.3965 a.=0.883

1+ a8 —aye®+ ...] (4.6)

— . e ) - min (R, Ra)
ag = oy = (1 + 2va =~ 23 (1 - vo)? =m

Here the subscripts j = 1 to 4 correspond to the boundary conditions (1) — (4) of (1. 2).
(The coefficients a,j, @oj, ... are not found herein),

If the conditions F|, = 0. e,|, = 0 (e, is the displacement normal to the contour



130 L.S.Srubshchik

T') are taken in (3),(4) from (1.2) instead of the conditions u (s) = v (s) = U, then
(4.5) is obtained for p, , where A = 2. In this case the value of p, has been found
earlier by Pogorelov by geometric methods (see [1]), and the influence of imperfections
in fixing the edge on p, has been investigated in [10].

The appropriate expansions (2, 1) and (3, 2) describe the asymptotic behavior of an
ellipsoidal shell in the precritical stage, The shell is mainly deformed as a rigid body
and a strong change in the swresses, moments, etc, is observed only near the edge, The
process of shell snapping starts in the edge effect zone, where this occurs at once along
the whole support contour in the case of boundary conditions (1), (2) in (1. 2), and starts
with the formation of crescent-shaped dents in the neighborhood of the vertices of the
minor axis of the ellipse D:

Setting R, = R, = R, we obtain the asymptotic value of the upper critical pres-
sure of a spherical shell from (4, 6)

pi* = V'S:E ) ('%") 1+ a2 = 02" — -] (4.7)

a, = 0.3965, @, =10.883, ay=a, =2
i.e, it agrees with the values found by axisymmertric theory [8].

It has been shown in [11 - 14] that the buckling of a thin spherical shell under uniform
external pressure can occur in a nonsymmetric mode, where the number of harmonics »
corresponding to the minimal critical load increases as the value of the parameter ¢
diminishes, Formula (4. 7) results in the deduction that sufficiently thin spherical shells
(g — 0) under uniform external pressure buckle in an axisymmetric mode (*).

However, for j = 4 formula (4, 7) contradicts the asymptotic value of py , the upper
critical pressure for buckling in a nonsymmetric mode, found in [11]

*Rh .
u 872 (4.8)

py* = 0.864p,*, if m—’a‘—:‘v—-_-)

Here, the following must be noted, All the deductions herein (including (4. 7)) have been
obtained under the assumption that for ¢ — U changes in the solutions in a direction of
the normal to contowr I' (in the boundary layer) have a higher order of magnitude in
£7! than along T. Moreover, it is easy to show that (4, 7) holds for the cases ; = 3,4
under the condition

Tt =001),0<a<2(—>U, n— o).
As regards the result (4, 8), it seems to be doubtful, The method of obtaining it contains
many unfounded assumptions (for example, the boundary layer functions for the radial
stress resultants in the axisymmetric solution are discarded),

The author is grateful to 1,1, Vorovich, V,1,Iudovich and L,B, Tsariuk for attention to
the research,

*) A,V,.Pogorelov: Report to the All-Union Conference on Plate and Shell Theory,
Rostpveon~Don, 1971,
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